PROBLEM 5

Wheeling and Dealing

Input file: dealin.txt
Output file: dealout.txt

Time and memory limits: 1 second, 1 GB

There is an election taking place with N candidates (numbered from 1 to N) and M voters. Through extensive surveys, you know that the ith voter plans to vote for candidate V_i . To win the election, a candidate must receive **strictly more votes** than every other candidate.

You have a vested interest in candidate 1 winning the election, and have discovered that you can pay the ith voter P_i dollars to change their vote to any candidate of your choosing. What is the minimum amount of money you must pay so that candidate 1 wins?

Input

- ullet The first line of input contains the integers N and M.
- The second line of input contains M integers describing the voters' plans. They are V_1,V_2,\ldots,V_M .
- The third line of input contains M integers describing the amount of money (in dollars) that you can pay each voter to change their vote. They are P_1, P_2, \ldots, P_M .

Output

Your program must output the minimum amount of money you must pay (in dollars) so that candidate $1\ \mathrm{wins}$.

Sample input 1	Sample input 2	Sample input 3
5 6	2 5	3 4
1 5 4 4 3 3	2 2 2 2 2	2 1 3 1
0 8 9 1 4 7	3 6 1 2 4	8 2 1 5
Sample output 1	Sample output 2	Sample output 3
5	6	0

Explanation

In the first sample case, you can make candidate 1 win the election for a total of 5 dollars by:

- Paying 1 dollar to the fourth voter and asking them to vote for candidate 2.
- ullet Paying 4 dollars to the fifth voter and asking them to vote for candidate 1.

In the second sample case, you can make candidate 1 win the election for a total of 6 dollars by:

- Paying 3 dollars to the first voter and asking them to vote for candidate 1.
- Paying 1 dollar to the third voter and asking them to vote for candidate 1.
- Paying 2 dollars to the fourth voter and asking them to vote for candidate 1.

In the third sample case, you don't need to do anything to make candidate $1\ \mathrm{win}.$

Subtasks and constraints

For all subtasks:

- $2 \le N \le 100000$.
- $1 \le M \le 100000$.
- $1 \le V_i \le N$ for all i.
- $0 \le P_i \le 10\,000$ for all i.

Additionally:

- For Subtask 1 (15 marks), $N \leq 1000$, $M \leq 1000$, and $P_i = 1$ for all i.
- For Subtask 2 (15 marks), $P_i = 1$ for all i.
- For Subtask 3 (40 marks), $N \leq 100$ and $M \leq 100$.
- For Subtask 4 (30 marks), no special constraints apply.