Problem 6: Battleship

Input File: shipin.txt
Output File: shipout.txt

Time limit	Memory limit
1 second	256 MB

Statement

Sheeta and Pazu are playing a game of air-battleship on an grid board with N rows and M columns. Pazu has 2 airships left. Each airship occupies a 1 by K or K by 1 rectangle within the grid, and airships do not overlap (even though air-battleship involves airships, it is still a very 2 dimensional game).

The coordinates (i, j) denote the square in the i th row and j th column, both of which are numbered from one. Based on Pazu's previous moves Sheeta has determined a strategic value for each square (i, j), denoted $A_{i, j}$, which is an non-negative integer.

Sheeta knows Pazu will position his ships such that the sum of the strategic values of the squares occupied by a ship are maximised. In this case, help Sheeta determine the maximum sum of strategic values of a valid ship placement. It is guaranteed that a valid placement exists.

Input

The first line of input contains 3 integers $N M K$. The next N lines each contain M integers, the j th integer on the i th row is $A_{i, j}$.

Output

Output 1 integer, the maximum strategic value sum.

Sample Input 1

Sample Output 1

442
6121
5143
0516
9066

Sample Input 2

Sample Output 2

```
1114
\(\begin{array}{lllllllllll}3 & 2 & 5 & 1 & 4 & 1 & 3 & 3 & 10 & 6 & 1\end{array}\)
```


Sample Input 3

$\begin{array}{lll}3 & 3 & 3 \\ 5 & 1 & 0 \\ 5 & 1 & 0 \\ 5 & 5 & 5\end{array}$

Explanation

Refer to below diagram for optimal placements. Red and green squares denote the two ship positions respectively. Note for Sample Input 3 that ships cannot overlap and must be contained within the grid.

6	1	2	1
5	1	4	3
0	5	1	6
9	0	6	6

Sample Input 1

3	2	5	1	4	1	3	3	10	6	1

Sample Input 2

Sample Input 3

Constraints

- $1 \leq N, M \leq 1000$ and $N M \geq 2$
- $1 \leq K \leq 1000$ and K is such that a valid battleship placement exists
- $0 \leq A_{i, j} \leq 10^{6}$ for all (i, j)

Subtasks

- For Subtask 1 (15 points), $N=1$.
- For Subtask 2 (15 points), $N=M=K$.
- For Subtask 3 (15 points), $N, M \leq 30$.
- For Subtask 4 (15 points), $N, M \leq 80$.
- For Subtask 5 (15 points), $N, M \leq 200$.
- For Subtask 6 (25 points), no further constraints apply.

