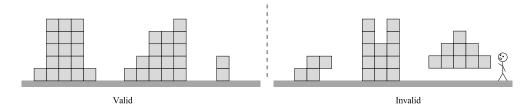
Art, Key, Texture


Time and Memory Limits: 1.5 seconds, 128 MB

You are Michelangelo, a budding artist in Renaissance Italy who has been employed by a wealthy noble to create the most beautiful sculpture in all the lands.

You begin with an upright marble slab which can be thought of as a $H \times W$ grid of 1×1 marble blocks. You then chisel away unnecessary parts of the slab until you are left with a beautiful sculpture consisting of zero or more blocks.

It is key that:

- Each level of the sculpture consists of a single connected row of blocks. Having separate disconnected sections on a level is far too post-cubist squarist.
- All of the blocks on each level must rest upon a block from the level below it. The bottom level must rest on the ground.

Unfortunately, your creative desires are stifled by commercial constraints: the noble you are making this sculpture for has a particular distaste for the some of your slab's marble blocks (the textures are too "swirly", you're told), and a particular penchant for others ("Yes! I like those colours"). For each marble block you have a number – possibly negative – indicating how beautiful it is. Your task is to design a sculpture where the sum of these "beauty numbers" is as large as possible.

Input

- The first line of input will contain two space-separated integers H and W, representing the height and width of the marble slab.
- The next H lines of input will each contain W integers representing the beauty numbers of the blocks in the slab.

Output

Output should consist of a single integer: the largest possible sum of "beauty numbers" for your sculpture.

Sample Input 1	Sample Input 2
5 6 -99 1 -99 -99 1 -99 1 -99 1 1 -99 1 -99 1 -99 1 1 -99 1 1 -99 1 1 1 1 1 1 1 -99 1	5 4 7 1 1 2 -5 2 -6 3 -3 -8 1 -4 4 2 -2 -3 -1 3 1 1
Sample Output 1 7	Sample Output 2

Explanation

Below are possible sculptures that maximise the sum of "beauty numbers" for each sample case above.

-99 1 -99 -99 1 -99	7 1 1 2
1 -99 1 1 -99 1	-5 2 -6 3
-99 1 -99 1 1 -99	-3 -8 1 -4
1 1 -99 1 1 1	4 2 -2 -3
1 1 1 1 -99 1	-1 3 1 1
Sample Case 1	Sample Case 2

Subtasks & Constraints

For all subtasks, $1 \leq H, W \leq 1,000$ and all "beauty numbers" are integers between -1,000,000 and 1,000,000 inclusive.

- For Subtask 1 (30 points), all "beauty numbers" are either -1,000,000 or 1.
- For Subtask 2 (20 points), $H \leq 100$ and $W \leq 25$.
- For Subtask 3 (25 points), $H \leq 200$ and $W \leq 200$.
- For Subtask 4 (25 points), no further constraints apply.