Lazy Hike

You are planning a hike through the notoriously hilly Bitwise Ranges. The ranges are made up of N mountains (numbered from 1 to N). The i-th mountain has a height of h_{i} metres. No two mountains have the same height. The mountains are connected by M bidirectional trails. The i-th trail connects mountain u_{i} to mountain v_{i}. No two trails connect the same pair of mountains.

When walking along a trail from mountain i to mountain j :

- if $h_{i}<h_{j}$, then you are walking uphill for $\left|h_{i}-h_{j}\right|$ metres.
- if $h_{i}>h_{j}$, then you are walking downhill for $\left|h_{i}-h_{j}\right|$ metres.

You have already decided to begin your hike from mountain 1, but have not decided which mountain you will finish on.
How many mountains could you finish on if you are willing to walk at most A metres uphill in total, and at most B metres downhill in total? Note that mountain 1 is a possible finishing mountain.

Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $2 \leq N \leq 100000$.
- $0 \leq A, B \leq 1000000000$.
- $1 \leq h_{i} \leq 1000000000$ for all i.
- No two mountains have the same height.
- $1 \leq M \leq 100000$.
- $1 \leq u_{i}, v_{i} \leq N, u_{i} \neq v_{i}$ for all i.
- No two trails connect the same pair of mountains.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	20	$A=0$.
2	20	$A=1$.
3	40	$N, A, B, M \leq 100 . h_{i} \leq 100$, for all i.
4	20	No additional constraints.

Input

- The first line of input contains the integers N, A and B.
- The second line contains N integers $h_{1}, h_{2}, \ldots, h_{N}$.
- The third line contains the integer M.
- The following M lines describe the trails. The i-th line contains u_{i} and v_{i}.

Output

Output a single integer, the number of mountains you could finish on.
Note: Your solution may involve integers which are large. Consider using 64-bit integers ('long long' in $C++$) in your solution.

Sample Input 1

72010
154092513105
7
21
46
17
72
74
43
16

Sample Input 2

704
68142413
8
14
64
67
47
23
15
16
65

Sample Input 3

1011000
40710202130351464 9

310
45
67
59
78
29
13
14
16

Sample Output 3

Sample Output 1

4

Sample Output 2

3

7

Explanation

The sample cases are illustrated below. The mountains that you can finish your hike on are shaded orange.

In Sample Input 1, there are 4 possible finishing mountains:

- You could hike $1 \rightarrow 6 \rightarrow 4$ for a total of 15 metres uphill and 5 metres downhill.
- You could hike $1 \rightarrow 6$ for a total of 0 metres uphill and 5 metres downhill.
- You could hike $1 \rightarrow 7$ for a total of 0 metres uphill and 10 metres downhill.
- You could start and finish your hike on mountain 1.

Sample Inputs 2 and 3 are left as an exercise to the reader.

Figure 1: Sample Input 1

Figure 2: Sample Input 2

Figure 3: Sample Input 3

