Winter

The prosperous kingdom of Ragden consists of N cities (numbered from 1 to N) connected by $N-1$ roads. The i-th road connects city a_{i} to city b_{i} in both directions. There is exactly one sequence of roads connecting each pair of cities in the kingdom.

The i-th city has a profit value of p_{i}. A city can have $p_{i}<0$, indicating that it loses money for the kingdom.

The resident weathermancers predict a frigid and chilling winter to come. You've been tasked with choosing zero or more cities to remove, along with any roads connected to those cities, so that:

- At least one city remains,
- There is exactly one sequence of roads connecting each pair of remaining cities, and
- The total sum of profit values of the remaining cities is maximised.

After removing cities according to the above constraints, what is the maximum total profit the kingdom can generate?

Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $2 \leq N \leq 100000$.
- $-100000 \leq p_{i} \leq 100000$ for all i.
- $1 \leq a_{i}, b_{i} \leq N$ for all i.
- There is exactly one sequence of roads connecting each pair of cities.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	20	$a_{i}=i$ and $b_{i}=i+1$, for all i. That is, the cities form a line.
2	20	p_{i} is 1 or -100000 for all i.
3	35	There is always an optimal answer where city 1 remains.
4	25	No additional constraints.

Input

- The first line of input contains the integer N.
- The second line contains N integers $p_{1}, p_{2}, \ldots, p_{N}$.
- The following $N-1$ lines describe the roads. The i-th line contains the two integers a_{i} and b_{i}.

Output

Output a single integer: the maximum total sum of profit values possible.
Note: Your solution may involve integers which are large. Consider using 64-bit integers ('long long' in C ++) in your solution.

Sample Input 1
 10
 $\begin{array}{llllllllll}-3 & 5 & -4 & 2 & 4 & -10 & 2 & 0 & -1 & 7\end{array}$
 19
 41
 67
 56
 610
 109
 98
 21
 31

Sample Output 1
10

Sample Input 2

6
$\begin{array}{llllll}-5 & 2 & -1 & 6 & -7 & 4\end{array}$
12
23
34
45
56

Sample Input 3

9

Sample Output 3

$-10000011111-1000001-1000001$
12
26
56
46
69
97
98
93

Sample Input 4

3
$-3-5-6$
-3
12
23

Explanation

The sample cases are illustrated below. The remaining cities are shaded orange.

Figure 1: Sample Input 1

Figure 2: Sample Input 2

Figure 3: Sample Input 3

Figure 4: Sample Input 4

