Electrical Fault

Oh no, your laptop is experiencing an electrical fault! Unwilling to switch to coding on your phone, your only option is to make the repair yourself.

Your laptop consists of V electrical terminals (numbered 1 to V), connected by E bidirectional wires. The i th wire connects terminal a_{i} to terminal b_{i} and is d_{i} micrometers long. K of the terminals are grounded terminals: $x_{1}, x_{2}, \ldots x_{K}$. To fix your laptop you must find a path between two different grounded terminals. What is the shortest path possible?

Subtasks and Constraints

For all subtasks:

- $2 \leq V \leq 100000$.
- $1 \leq E \leq 300000$.
- $2 \leq K \leq V$.
- $1 \leq x_{1}<x_{2}<\cdots<x_{K} \leq V$.
- $1 \leq a_{i}, b_{i} \leq V, a_{i} \neq b_{i}$ for all i.
- $1 \leq d_{i} \leq 10000$, for all i.
- You are guaranteed that there exists at least one path between two different gounded terminals.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	15	$K=2$ and $d_{i}=1$ for all i.
2	15	$K=2$.
3	40	$d_{i}=1$ for all i.
4	30	No additional constraints.

Input

- The first line of input contains the three integers V, E and K.
- The next line of input contains the integers $x_{1}, x_{2}, \ldots, x_{K}$.
- The following E lines describe the wires. The i th line contains a_{i}, b_{i} and d_{i}.

Output

Output a single integer, the shortest path between two grounded terminals.

Sample Input 1
8104
1458
5830
129
125
238
432
7410
4615
175
762
656

Sample Input 2
12135
$\begin{array}{llll}2 & 3 & 61012\end{array}$
121
371
141
241
271
791
461
451
581
681
5101
9101
11121

Sample Input 3
892
45
473
834
813
515
8210
767
6510
161
632

Sample Output 1
13

Sample Output 2

Sample Output 3

Explanation

In Sample Input 1, there are $V=8$ terminals and $E=10$ wires. Terminals $1,4,5$ and 8 are grounded. There is a path between terminals 1 and 5 that is 13 micrometers long, which is the shortest possible.
In Sample Input 2, there are $V=12$ terminals and $E=13$ wires. Terminals $2,3,6,10$ and 12 are grounded. There is a path between terminals 2 and 3 that is 2 micrometers long, which is the shortest possible.
In Sample Input 3, there are $V=8$ terminals and $E=9$ wires. Terminals 4 and 5 are grounded. There is a path between terminals 4 and 5 that is 16 micrometers long, which is the shortest possible.

Figure 1: Sample input diagrams. The grounded terminals are shaded and the shortest path is marked in bold.

