Speed Friending

Congratulations on being hired as a tutor at December camp! The students have just arrived and your first job is to run icebreaker activities.

There are N students standing in a line, and you have just numbered them 1 to N from left to right. Additionally, each student has told you their distinct personality value p_{i}. From the tutor briefing, you know that students with closer personality values become friends faster.

This year, the students will perform speed-friending scenarios. Each speed-friending scenario is started by a student s. Initially, student s is not friends with any other students. Then, student s will become friends with the other students one at a time as follows:

- If student s has no student to their left, then they befriend the closest student to their right.
- If student s has no student to their right, then they befriend the closest student to their left.
- Otherwise, let l be the closest student to their left, and r be the closest student to their right. Student s will befriend the student that has the closer personality value to their own. In particular:
- If $\left|p_{s}-p_{l}\right|<\left|p_{s}-p_{r}\right|^{1}$, then they befriend student l.
- If $\left|p_{s}-p_{l}\right|>\left|p_{s}-p_{r}\right|$, then they befriend student r.
- Otherwise, if $\left|p_{s}-p_{l}\right|=\left|p_{s}-p_{r}\right|$, then student s can pick either l or r to befriend.

After student s befriends another student, that student leaves the line and the process repeats. This continues until student s has befriended everyone. The final friend is the student who was befriended last. Note that the final friend may depend on the choices made by student s.

Consider the following example with $N=4$ students and $s=3$.

Student 3 considers $l=2$ and $r=4$. Since $\left|p_{s}-p_{l}\right|=|4-5|=1$ and $\left|p_{s}-p_{r}\right|=|4-2|=2$, student 3 befriends l (student 2) first.

Now, $l=1$ and $r=4$. Since $\left|p_{s}-p_{l}\right|=|4-7|=3$ and $\left|p_{s}-p_{r}\right|=|4-2|=2$, student 3 befriends r (student 4) next.

Student 3 has no student to their right, and so they befriend student 1 . Student 1 is the final friend. This concludes the example.

[^0]You must support Q operations, numbered from 1 to Q. Each operation has a value t_{i}, which is either 1 or 2 :

- If $t_{i}=1$, then you are additionally given a value s_{i}. You will run a speed-friending scenario starting at student s_{i}. Output the index of the final friend, or -1 if there are multiple possibilities for the final friend.
- If $t_{i}=2$, then you are additionally given two values s_{i} and x_{i}. This means that the personality value of student s_{i} has changed to x_{i}.
After each speed-friending scenario, every student returns to their original position in the line and forgets their past friendships.

Subtasks and Constraints

For all subtasks:

- $2 \leq N \leq 200000$.
- $1 \leq Q \leq 200000$.
- $0 \leq p_{i} \leq 1000000000$ for all i.
- $t_{i}=1$ or $t_{i}=2$ for all i.
- $1 \leq s_{i} \leq N$ for all i.
- $0 \leq x_{i} \leq 1000000000$ for all i.
- Initially, and after each operation, the students have distinct personality values. In particular, $p_{i} \neq p_{j}$ for all $i \neq j$.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	20	$Q=1, t_{1}=1$, and $p_{s_{1}}=0$.
2	15	$Q=1$ and $t_{1}=1$.
3	35	$t_{i}=1$ for all i.
4	30	No additional constraints.

Input

- The first line of input contains the integer N.
- The second line of input contains N integers describing the initial personality values of the students. They are $p_{1}, p_{2}, \ldots, p_{N}$.
- The third line of input contains the integer Q.
- The next Q lines of input describe the operations. The i th line depends on the value of t_{i} :
- If $t_{i}=1$, then the line contains the two integers t_{i} and s_{i}
- If $t_{i}=2$, then the line contains the three integers t_{i}, s_{i}, and x_{i}.

Output

Output one line for each operation with $t_{i}=1$. This line should contain a single integer: the index of the final friend, or -1 if there are multiple possibilities for the final friend.

3		-1	
1	3	5	1
5		3	
1	2		
2	3	4	
1	2		
2	3	6	
1	2		

Sample Input 1

4
7542
1
13

Sample Input 2

Sample Output 1
1

Sample Output 2

-1
1
3

12
234
12

12

Explanation

The first sample case corresponds to the example on the first page.
The second sample case has $Q=5$ operations:

- The first operation has $t_{1}=1$ and $s_{1}=2$. Since $\left|p_{s}-p_{l}\right|=\left|p_{s}-p_{r}\right|=2$, student 2 can choose to befriend either student 1 or student 3 . The final friend depends on this choice, and so the answer is -1 .
- The second operation has $t_{2}=2, s_{2}=3$, and $x_{2}=4$. This sets $p_{3}=4$.
- The third operation has $t_{3}=1$ and $s_{3}=2$. Since $\left|p_{s}-p_{l}\right|=2$ and $\left|p_{s}-p_{r}\right|=1$, student 2 will initially befriend student $r=3$. Therefore, student 1 is the final friend.
- The fourth operation has $t_{4}=2, s_{4}=3$, and $x_{4}=6$. This sets $p_{3}=6$.
- The fifth operation has $t_{5}=1$ and $s_{5}=2$. Since $\left|p_{s}-p_{l}\right|=2$ and $\left|p_{s}-p_{r}\right|=3$, student 2 will initially befriend student $l=1$. Therefore, student 3 is the final friend.

[^0]: ${ }^{1}$ The notation $|x|$ denotes the absolute value of x. The absolute value of a number is equivalent to its distance from 0 . For example, $|2|=|-2|=2$.

