
Australian Informatics Olympiad 2019 — Evading Capture 1

Evading Capture

Input File: evadingin.txt
Output File: evadingout.txt

It is the year 2077, when androids live among us, cars no longer have wheels and humans are born
on blockchain. You are preparing to pull off the greatest heist of all time: stealing the Bitcoin.
Stealing the Bitcoin is the easy part; evading capture is much harder.

The world consists of N cities, numbered from 1 to N . E pairs of these cities are adjacent to
each other. In a single hop, you can travel from the city you are currently in to any adjacent city.

Your heist will begin in city X, where the Bitcoin is located. After stealing the Bitcoin, you
will need to make exactly K hops to be safe from capture (too few and the Chaser will catch you,
too many and the All-Seeing I will know where you are).

You aren’t yet sure which hops you will make on the day of the heist, so you have decided to
work out the number of different cities you could finish in after making exactly K hops. You whip
out your trusty laptop and begin coding.

Input

The first line contains the integers N , E, X and K, which are the number of cities, the number of
adjacent pairs of cities, the starting city and the number of hops you must make, respectively.

Then E lines follow, describing the adjacent pairs of cities. The ith of these lines contains ai
and bi, indicating that city ai is adjacent to city bi.

Output

Your program should output a single integer, the number of different cities you could finish in after
making exactly K hops. You are guaranteed that at least one such sequence of hops exists.

Sample Input 1

6 5 4 2

3 1

3 2

1 2

4 2

3 6

Sample Output 1

3



Australian Informatics Olympiad 2019 — Evading Capture 2

Sample Input 2

25 40 13 29

1 2

1 6

2 3

2 7

3 4

3 8

4 5

4 9

5 10

6 7

6 11

7 8

7 12

8 9

8 13

9 10

9 14

10 15

11 12

11 16

12 13

12 17

13 14

13 18

14 15

14 19

15 20

16 17

16 21

17 18

17 22

18 19

18 23

19 20

19 24

20 25

21 22

22 23

23 24

24 25

Sample Output 2

12

Sample Input 3

36 40 26 5

1 2

1 7

2 3

2 8

3 9

4 5

4 10

5 11

6 12

7 8

7 13

8 14

9 10

9 15

12 18

14 15

14 20

15 16

16 17

17 18

17 23

19 20

19 25

20 21

20 26

21 22

21 27

22 28

23 24

24 30

25 31

26 27

27 28

27 33

28 34

29 30

29 35

33 34

34 35

35 36

Sample Output 3

14



Australian Informatics Olympiad 2019 — Evading Capture 3

Explanation

In the first sample input, you start at city X = 4 and must make K = 2 hops. There are 3 different
cities you could finish in, described below:

� 4→ 2→ 1

� 4→ 2→ 3

� 4→ 2→ 4

1

2 3

4 65

Figure 1: *
Cities & possible hops in Sample Input 1

In the second sample input, you start at city X = 13 and must make K = 29 hops. The number
of different cities you could finish in is 12.

In the third sample input, you start at city X = 26 and must make K = 5 hops. The number
of different cities you could finish in is 14.

1 2

6

3

7

4

8

5

9 10

11 12 13 14 15

16 17 18 19 20

21 22 23 24 25

Figure 2: *
Cities & possible hops in Sample Input 2

1 2

7

3

8 9

4 5

10 11

6

12

13 14 15 18

20

16 17

2319

25

21

26

22

27 28

24

30

31 33 34

29

3532 36

Figure 3: *
Cities & possible hops in Sample Input 3



Australian Informatics Olympiad 2019 — Evading Capture 4

Subtasks & Constraints

For all cases:

� 1 ≤ N ≤ 100 000.

� 1 ≤ E ≤ 100 000.

� 1 ≤ X ≤ N .

� 1 ≤ K ≤ 1 000 000 000.

Furthermore:

� For Subtask 1 (10 marks), K = 1. That is, you must make exactly 1 hop to be safe from
capture.

� For Subtask 2 (15 marks), the cities, adjacent pairs of cities, and your starting city are the
same as Sample Input 2, but K may be different.

� For Subtask 3 (15 marks), the cities and the adjacent pairs of cities are the same as Sample
Input 2, but K and X may be different.

� For Subtask 4 (35 marks), the cities and the adjacent pairs of cities are the same as Sample
Input 3, but K and X may be different.

� For Subtask 5 (15 marks), N ≤ 50.

� For Subtask 6 (10 marks), no further constraints apply.


