Art Class II

Input File: artin.txt
 Output File: artout.txt

Time and Memory Limits: 1 second, 1 GB
You and your classmates were being a little too rowdy during art class this morning and have made a bit of a mess.

There's a large, usually blank wall at the back of the classroom. Unfortunately, the class (mostly you, honestly) have made \mathbf{N} holes in the wall. The \mathbf{i} th hole is located $\mathbf{x}_{\mathbf{i}}$ centimetres from the left edge of the wall, and $\mathbf{y}_{\mathbf{i}}$ centimetres from the bottom edge of the wall.

You and your class have decided to create a single large poster to put on the wall to cover the holes.

To be as inconspicuous as possible, your poster should be:

- rectangular in shape
- hung so its sides are parallel to the edges of the wall
- large enough to cover all of the holes.

Note that a hole on the very edge of the poster will still be hidden (seems like your teacher forgot their glasses today).

You don't have a lot of time before the teacher returns, so you've decided to write a program that will tell you the area of the smallest poster that will cover all the holes.

Input

- The first line of input contains the single integer \mathbf{N}.
- The next \mathbf{N} lines describe the location of the holes. The $\mathbf{i t h}$ line contains the two integers $\mathbf{x}_{\mathbf{i}}$ and $\mathbf{y}_{\mathbf{i}}$.

Output

Your program should output a single integer, the area (in square centimetres) of the smallest poster that will cover all the holes.

Sample Input 1	Sample Input 2	Sample Input 3
5	4	2
23	44	21
31	33	31
42	55	
44	11	
61		
Sample Output 1	Sample Output 2	Sample Output 3
12	16	0

Explanation

Each of the sample cases are illustrated below. Note that in the third sample input, the holes can be covered by an infinitely thin poster with a height of zero. The area of this poster is zero.

Subtasks \& Constraints

For all test cases:

- $\mathbf{2} \leq \mathbf{N} \leq 100000$.
- $\mathbf{1} \leq \mathbf{x}_{\mathbf{i}} \leq 10000$, for all \mathbf{i}.
- $1 \leq y_{i} \leq 10000$, for all \mathbf{i}.

Additionally:

- For Subtask 1 (40 points), $\mathbf{N}=\mathbf{2}$.
- For Subtask 2 (40 points), $\mathbf{x}_{\mathbf{i}}=\mathbf{y}_{\mathbf{i}}$, for all i. See Sample Input 2 for an example.
- For Subtask 3 (20 points), no special constraints apply.

