PROBLEM 6
 Spaceship Shuffle

Input File: spacein.txt
Output File: spaceout.txt

Time and Memory Limits: 1 second, 1 GB

Welcome aboard, Captain! Today you are in charge of the first ever doughnut-shaped spaceship, The Circular. There are N cabins arranged in a circle on the spaceship. They are numbered from 1 to N in a clockwise direction around the ship. The i th and the $(i+1)$ th cabins are connected. So too are cabin 1 and cabin N.

Currently the i th cabin has A_{i} crewmates, however the spaceship cannot depart unless there are exactly B_{i} crewmates in this cabin.

To achieve this, you have the power to pay crewmates to change cabins. You can pay a crewmate $\$ 1$ to move to an adjacent cabin. A crewmate can be asked to move multiple times, provided that you pay them \$1 each time.

What is the fewest dollars you must pay before you can depart? It is always be possible to depart.

Figure 1: One possible solution to Sample Input 1, illustrated one move at a time. In each move, a crewmate moves from the red cabin (dashed) to the green cabin. Cabin 1 is the topmost one.

Input

- The first line of input contains the integer N.
- The second line of input contains N integers describing the initial number of crewmates in each cabin. They are $A_{1}, A_{2}, \ldots, A_{N}$.
- The third line of input contains N integers describing the desired number of crewmates in each cabin. They are $B_{1}, B_{2}, \ldots, B_{N}$.

Output

You program must output one integer: the fewest dollars you must pay before you can depart.

Sample Input 1

6
521651
332732
Sample Output 1
5

Sample Input 2

5
50000
11111
Sample Output 2
6

Sample Input 3

6
220111
112111

Sample Output 3

3

Explanation

In the first sample case, one optimal solution is to move a crewmate:

- from cabin 1 to 2
- from cabin 1 to 2
- from cabin 2 to 3
- from cabin 5 to 4
- from cabin 5 to 6 .

In the second sample case, one optimal solution is to move a crewmate:

- from cabin 1 to 2
- from cabin 1 to 2
- from cabin 1 to 5
- from cabin 1 to 5
- from cabin 2 to 3
- from cabin 5 to 4 .

In the third sample case, one optimal solution is to move a crewmate:

- from cabin 1 to 2
- from cabin 2 to 3
- from cabin 2 to 3 .

Subtasks \& Constraints

For all subtasks:

- $2 \leq N \leq 100000$.
- $0 \leq A_{i}, B_{i} \leq 100000$ for all i.
- $A_{1}+A_{2}+\cdots+A_{N}=B_{1}+B_{2}+\cdots+B_{N}$.

Additionally:

- For Subtask 1 (20 marks), $A_{i}=0$ for all $i \geq 2$. That is, all crewmates start in cabin 1.
- For Subtask 2 (35 marks), there is an optimal solution where no crewmates move between cabin 1 and cabin N.
- For Subtask 3 (35 marks), $N \leq 1000$.
- For Subtask 4 (10 marks), no special constraints apply.

