PROBLEM 5
 Wheeling and Dealing

Input file: dealin.txt
Output file: dealout.txt
Time and memory limits: 1 second, 1 GB

There is an election taking place with N candidates (numbered from 1 to N) and M voters. Through extensive surveys, you know that the i th voter plans to vote for candidate V_{i}. To win the election, a candidate must receive strictly more votes than every other candidate.

You have a vested interest in candidate 1 winning the election, and have discovered that you can pay the i th voter P_{i} dollars to change their vote to any candidate of your choosing. What is the minimum amount of money you must pay so that candidate 1 wins?

Input

- The first line of input contains the integers N and M.
- The second line of input contains M integers describing the voters' plans. They are $V_{1}, V_{2}, \ldots, V_{M}$.
- The third line of input contains M integers describing the amount of money (in dollars) that you can pay each voter to change their vote. They are $P_{1}, P_{2}, \ldots, P_{M}$.

Output

Your program must output the minimum amount of money you must pay (in dollars) so that candidate 1 wins.

Sample input 1 Sample input 2 Sample input 3
 5
 $\left.\begin{array}{llllllllll}5 & 6 & & & & 2 & 5 & \\ 1 & 5 & 4 & 4 & 3 & 3 & 2 & 2 & 2 & 2\end{array}\right)$
 6
 34
 2131
 8215
 Sample output 3
 0

Explanation

In the first sample case, you can make candidate 1 win the election for a total of 5 dollars by:

- Paying 1 dollar to the fourth voter and asking them to vote for candidate 2.
- Paying 4 dollars to the fifth voter and asking them to vote for candidate 1.

In the second sample case, you can make candidate 1 win the election for a total of 6 dollars by:

- Paying 3 dollars to the first voter and asking them to vote for candidate 1.
- Paying 1 dollar to the third voter and asking them to vote for candidate 1.
- Paying 2 dollars to the fourth voter and asking them to vote for candidate 1.

In the third sample case, you don't need to do anything to make candidate 1 win.

Subtasks and constraints

For all subtasks:

- $2 \leq N \leq 100000$.
- $1 \leq M \leq 100000$.
- $1 \leq V_{i} \leq N$ for all i.
- $0 \leq P_{i} \leq 10000$ for all i.

Additionally:

- For Subtask 1 (15 marks), $N \leq 1000, M \leq 1000$, and $P_{i}=1$ for all i.
- For Subtask 2 (15 marks), $P_{i}=1$ for all i.
- For Subtask 3 (40 marks), $N \leq 100$ and $M \leq 100$.
- For Subtask 4 (30 marks), no special constraints apply.

