PROBLEM 4

Shoptimality

Input file: shopin.txt
Output file: shopout.txt
Time and memory limits: 1 second, 1 GB

Congratulations, you've just been hired by Shoptimality! Your first task is to write a program that helps households find the best supermarket for them.

There are N houses, all situated along the same road. The i th house is positioned H_{i} metres from the left end of the road. There are also M supermarkets along the road, the i th of which is positioned S_{i} metres from the left end of the road.

For each house, you must determine the best supermarket. There are two things to consider:

- The prices. The j th supermarket has a price factor of P_{j}. A lower price factor is better.
- The distance. The distance from the i th house to the j th supermarket is $\left|H_{i}-S_{j}\right|{ }^{1}$ A smaller distance is better.

The badness of a supermarket is the sum of the price factor and distance: $P_{j}+\left|H_{i}-S_{j}\right|$. The best supermarket is the one with the lowest badness.
For each house, what is the badness of the best supermarket?

Input

- The first line of input contains the integers N and M.
- The second line of input contains N integers describing the positions of the houses. They are $H_{1}, H_{2}, \ldots, H_{N}$.
- The third line of input contains M integers describing the positions of the supermarkets. They are $S_{1}, S_{2}, \ldots, S_{M}$.
- The fourth line of input contains M integers describing the price factors of the supermarkets. They are $P_{1}, P_{2}, \ldots, P_{M}$.

Output

Your program must output a single line containing N integers, the i th of which is the badness of the best supermarket for the i th house.

[^0]
Sample input 1

43

1789
4610
000

Sample output 1

3121

Sample input 2

52
1020758090
3085
1050

Sample output 2

3020555555

Sample input 3

32
134
29
101

Sample output 3

976

Explanation

In the first sample case:

- The best supermarket for house 1 is the first one, which has a badness of $0+|1-4|=3$.
- The best supermarket for house 2 is the second one, which has a badness of $0+|7-6|=1$.
- The best supermarket for house 3 is the second one, which has a badness of $0+|8-6|=2$.
- The best supermarket for house 4 is the third one, which has a badness of $0+|9-10|=1$.

In the second sample case:

- The best supermarket for house 1 is the first one, which has a badness of $10+|10-30|=30$.
- The best supermarket for house 2 is the first one, which has a badness of $10+|20-30|=20$.
- The best supermarket for house 3 is the first one, which has a badness of $10+|75-30|=55$.
- The best supermarket for house 4 is the second one, which has a badness of $50+|80-85|=55$.
- The best supermarket for house 5 is the second one, which has a badness of $50+|90-85|=55$.

In the third sample case:

- The best supermarket for house 1 is the second one, which has a badness of $1+|1-9|=9$.
- The best supermarket for house 2 is the second one, which has a badness of $1+|3-9|=7$.
- The best supermarket for house 3 is the second one, which has a badness of $1+|4-9|=6$.

Subtasks and constraints

For all subtasks:

- $1 \leq N \leq 100000$.
- $1 \leq M \leq 100000$.
- $1 \leq H_{i}, S_{i} \leq 1000000000$ for all i.
- $0 \leq P_{i} \leq 1000000000$ for all i.
- $H_{1}<H_{2}<\cdots<H_{N}$. That is, the houses are ordered from left to right.
- $S_{1}<S_{2}<\cdots<S_{M}$. That is, the supermarkets are ordered from left to right.
- No position on the road is occupied by both a house and a supermarket.

Additionally:

- For Subtask 1 (15 marks), $N \leq 1000$ and $M \leq 1000$.
- For Subtask 2 (25 marks), $P_{i}=0$ for all i.
- For Subtask 3 (30 marks), $H_{N}<S_{1}$. That is, all houses are positioned to the left of all supermarkets.
- For Subtask 4 (30 marks), no special constraints apply.

[^0]: ${ }^{1}$ The notation $|x|$ denotes the absolute value of x. The absolute value of a number is equivalent to its distance from 0 . For example, $|2|=|-2|=2$. The absolute difference between two numbers is equivalent to the distance between them. For example, $|5-10|=|-5|=5$.

