JEALOUSY II

After a successful year, your business is relocating to a larger office. Your business has N employees (numbered from 1 to N), and the new office has M desks (numbered from 1 to M), where $M \ge N$.

Each employee will be assigned their own desk and, to maintain company morale, you want this assignment to be *jealousy-free*. Each employee has assigned an integer value to each desk: employee *i* values desk *j* with value $v_{i,j}$. An assignment of desks is considered *jealousy-free* if every employee believes that their desk is **strictly** better than every other employee's desk. More formally:

- Each employee i will be assigned a distinct desk a_i .
- For each pair of different employees i and j, it must hold that $v_{i,a_i} > v_{i,a_j}$. Note that employee i only considers their own values. Specifically, employee i is not concerned with how employee j values their assigned desk.

If M > N, then some desks will be unassigned. These desks do not cause any jealousy.

You must find a jealousy-free assignment, or determine that no such assignment exists.

Subtasks and Constraints

For all subtasks:

- $2 \le N \le 1500.$
- $N \le M \le 2500.$
- $0 \le v_{i,j} \le 10\,000\,000$ for all *i* and *j*.

Additional constraints for each subtask are given below.

Subtask Points		Additional constraints	
1	5	N = 2.	
2	15	$N = M$ and all v-values are distinct. That is, $v_{i,j} \neq v_{i',j'}$ unless $i = i'$ and $j = j'$.	
3	15	$v_{i,j} \leq 1$ for all i and j .	
4	30	$N, M \leq 200$ and all v-values are distinct. That is, $v_{i,j} \neq v_{i',j'}$ unless $i = i'$ and $j = j'$.	
5	20	All v-values are distinct. That is, $v_{i,j} \neq v_{i',j'}$ unless $i = i'$ and $j = j'$.	
6	15	No additional constraints.	

Input

- The first line of input contains the two integers N and M.
- The next N lines contains M integers. The *j*th integer on the *i*th line is $v_{i,j}$.

Note on Input

This problem has a large amount of input. To speed up input, those using cin in C++ are encouraged to include the following line at the beginning of their main function:

ios_base::sync_with_stdio(false);

If you are using scanf for some or all of the input, you should not include this line.

Output

The first line of output should be either POSSIBLE or IMPOSSIBLE, depending on whether a jealousyfree assignment exists. If your answer is POSSIBLE, then the next N lines should describe an assignment. In particular, the *i*th such line should contain the single integer a_i : the desk assigned to employee *i*. If there are multiple possible jealousy-free assignments, then you may output any of them.

Sample Input 1	Sample Output 1
2 3 4 3 2 5 1 5	POSSIBLE 2 3
Sample Input 2	Sample Output 2
2 2 0 1	IMPOSSIBLE

1 1

Explanation

In Sample Input 1, the only jealousy-free assignment has $a_1 = 2$ and $a_2 = 3$. In particular:

- Employee 1 believes that their desk is strictly better than employee 2's desk, since $v_{1,a_1} = 3$ and $v_{1,a_2} = 2$.
- Employee 2 believes that their desk is strictly better than employee 1's desk, since $v_{2,a_2} = 5$ and $v_{2,a_1} = 1$.

In Sample Input 2, there is no jealousy-free assignment. In particular:

- If $a_1 = 1$ and $a_2 = 2$, then $v_{1,a_1} < v_{1,a_2}$ and so this assignment is not jealousy-free.
- If $a_1 = 2$ and $a_2 = 1$, then $v_{2,a_2} = v_{2,a_1}$ and so this assignment is not jealousy-free.

Since there are no other possible assignments, the correct output is IMPOSSIBLE.