Loss of Balance

Input File	Output File	Time Limit	Memory Limit
standard input	standard output	2 seconds	256 MiB

An array A is (x, y)-fair, if there is an index i and an index j such that:

- $i<j$, and
- $A_{i}=x$ and $A_{j}=y$.

An array A is K-balanced if and only if:

- All elements of the array are integers between 1 and K.
- Every integer from 1 to K appears at least once in A.
- A is (x, y)-fair and (y, x)-fair for all pairs of integers x and y (from 1 to K) where $x \neq y$.

For example:

- $[1,2,3,4]$ is not 3 -balanced, since the array contains a 4.
- $[1,3]$ is not 3 -balanced, since the array does not contain a 2.
- $[1,2,1,3,1]$ is not 3 balanced, since it is not (3, 2)-fair.
- $[1,2,3,2,1]$ is 3 -balanced.

Hugo has an array A containing N elements that is K-balanced. Unfortunately, he lost the array and would like you to help him recover it.

Fortunately, Hugo recalls a relative ordering of the elements of A. More precisely, he has an array B also of length N. For all i and j :

- if $B_{i}=B_{j}$, then $A_{i}=A_{j}$,
- if $B_{i}>B_{j}$, then $A_{i} \geq A_{j}$ (large inequality), and
- if $B_{i}<B_{j}$, then $A_{i} \leq A_{j}$ (large inequality).

For example:

- If $B=[1,5,2]$, then $A_{1} \leq A_{3} \leq A_{2}$.
- If $B=[6,3,7,7,3,7]$, then $A_{3}=A_{4}=A_{6}$ and $A_{2}=A_{5}$. Furthermore, $A_{5} \leq A_{1} \leq A_{6}$.

Please help Hugo recover A, or say that it is impossible!

Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $2 \leq N \leq 200000$.
- $2 \leq K \leq N$.
- $1 \leq B_{i} \leq 200000$, for all i.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	10	$N \leq 10$ and $B_{i} \leq K$, for all i.
2	20	$B_{i} \leq K$, for all i.
3	30	$N \leq 3000$
4	10	$K \leq 5$
5	30	No further constraints apply.

Input

- The first line of input contains the two integers, N and K.
- The second line contains N integers. The i-th integer (starting from 1) is B_{i}.

Output

The output should contain N integers on a single line. The i-th of these integers should be A_{i}, and each integer must be between 1 and K.

The printed array A must be K-balanced and must match the relative order defined by B.
If there are many such correct array, you can output any of them. If no such array exists, print -1 instead.

Sample Input 1

53

53009003006

Sample Output 1

12321

Sample Input 2

105
12345678910

Sample Output 2

-1

Sample Input 3

62
122121

Sample Output 3

Explanation

In Sample Input 1, the only correct output is [1, 2, 3, 2, 1] (it is 3-balanced and it matches the relative order of B).

Note that, for example, the three following arrays would be incorrect output:

- [3, 1, 2, 3, 1] is 3-balanced, but does not match the relative order of B
- [1, 2, 3, 2, 2] matches the relative order of B, but is not 3-balanced.
- [1, 1, 2, 1, 1] matches the relative order of B, but is not 3 -balanced.

In Sample Input 2, it is impossible to create an increasing 5 -balanced array.
In Sample Input 3, the only correct output is [1, 2, 2, 1, 2, 1]. Note that Sample Input 3 satisfies the constraints of all subtasks.

