# Telefrogs

| Input File     | Output File     | Time Limit | Memory Limit |
|----------------|-----------------|------------|--------------|
| standard input | standard output | 1 second   | 256 MiB      |

Opal is a scientist studying the movement patterns of a particular species of supernatural amphibian, called the teleporting frog, or *telefrog* for short. Telefrogs are just like normal frogs, but instead of hopping, they  $teleport^1$ .

There is a colony of K telefrogs living together in a pond that Opal has been studying for D days. The pond contains N lily-pads numbered from 1 to N which the telefrogs like to sit on. Every frog was sitting on lily-pad 1 before Opal began studying the colony.

- At the start of each day, each telefrog may choose to teleport to another lily-pad in the pond.
- At the end of each day, Opal records the number of frogs on each lily-pad. In particular, there are exactly  $c_{ij}$  frogs on the *j*-th lily-pad during the *i*-th day.

No new frogs joined the colony and no frog ever went missing during her study.

At the end of her study, Opal realised that some of the K frogs might actually be *impostor frogs*, who do not have the ability to teleport! She found N - 1 hidden one-way tunnels between pairs of lily-pads. The *i*-th tunnel allows impostors on lily-pad  $a_i$  to travel to lily-pad  $b_i$  ( $a_i < b_i$ ). It is possible to travel from lily-pad 1 to any other lily-pad through a sequence of tunnels.

Every night, the impostors, as they lack the ability to teleport, may travel to another lily-pad through a sequence of tunnels.

Your task is to help Opal determine the *maximum* number of impostors there could be.

#### Subtasks and Constraints

For all subtasks, you are guaranteed that:

- $2 \le N \le 1000, 1 \le K \le 10^9$  and  $2 \le D \le 200$
- $0 \le c_{ij} \le K$ , for all *i* and *j*.
- $c_{i1} + c_{i2} + \ldots + c_{iN} = K$ , for all *i*. That is, the number of frogs observed on each day is K.
- $1 \le a_i < b_i \le N$ , for all *i*.
- It is possible to travel from lily-pad 1 to any other lily-pad through a sequence of tunnels.

Additional constraints for each subtask are given below.

| Subtask | Points | Additional constraints                      |
|---------|--------|---------------------------------------------|
| 1       | 14     | $D = 2$ and $a_i + 1 = b_i$ , for all $i$ . |
| 2       | 26     | $a_i + 1 = b_i$ , for all <i>i</i> .        |
| 3       | 16     | D=2                                         |
| 4       | 13     | $a_i = 1$ , for all <i>i</i> .              |
| 5       | 31     | No additional constraints.                  |

<sup>&</sup>lt;sup>1</sup>Nobody knows how the frogs actually teleport. Seems sus.

## Input

- The first line of input contains the integers N, K and D.
- The next N-1 lines describe the one-way tunnels. The *i*-th line contains  $a_i$  and  $b_i$ .
- The next D lines of input contain N integers each. The j-th integer on the i-th such line is  $c_{ij}$ .

# Output

Output a single integer, the maximum number of impostors that could have been among the telefrogs.

#### Sample Input 1

# Sample Output 1

2

# Sample Input 2

# Sample Output 2

0

# Explanation

In Sample Case 1, there could have been two impostors:

- The first impostor travels to lily-pad 2 on the first day, does nothing on the second day, and does nothing on the third day.
- The second impostor does nothing on the first day, does nothing on the second day, and travels to lily-pad 6 via lily-pad 3 on the third day.
- The first telefrog does nothing on the first day, teleports to lily-pad 2 on the second day, and teleports to lily-pad 1 on the third day.
- The second telefrog teleports to lily-pad 6 on the first day, teleports to lily-pad 2 on the second day, and teleports to lily-pad 4 on the third day.

It can be shown that there could not have been more than two impostors.

In Sample Case 2, none of the frogs could have been impostors.



Figure 1: In each case, black squares represent telefrogs and white squares represent impostors.