Hedge Maze

Puss and Kitty must face the diabolical challenge of the *Down-Right Hedge Maze*. The maze is an $R \times C$ grid of cells with R rows (numbered 1 to R from top to bottom) and C columns (numbered 1 to C from left to right). The cell in the rth column and cth row is denoted (r, c). There are three types of cells, denoted by an uppercase character:

- D: It is only allowed to move downwards from this cell (if there is a cell there).
- R: It is only allowed to move rightwards from this cell (if there is a cell there).
- B: It is allowed to move downwards or rightwards from this cell (if there is a cell there).

It is possible to reach cell (R, C) from every cell in the maze.

D	В	В	R	D	D	В	D
R	D	D	R	R	R	R	В
В	R	D	В	В	D	В	В
В	D	D	D	R	R	D	D
R	В	В	R	R	В	В	D

Figure 1: The maze from Sample Input 1. Thick black lines are drawn between cells where a move is disallowed.

To defeat the challenge, Puss and Kitty must answer Q queries. In each query, you are given four integers a_i, b_i, c_i and d_i and must answer the following question: If Puss starts in the cell (a_i, b_i) and Kitty starts in the cell (c_i, d_i) , what is the the fewest total moves they must make to meet at a common cell? Puss and Kitty start in different cells.

Subtasks and Constraints

For all subtasks:

- $2 \le R \le 1000$
- $2 \le C \le 500\,000$
- $4 \le R \times C \le 1\,000\,000$
- $1 \le Q \le 100\,000$
- $1 \le a_i \le R$ and $1 \le b_i \le C$ for all i.
- $1 \le c_i \le R$ and $1 \le d_i \le C$ for all i.
- $(a_i, b_i) \neq (c_i, d_i)$ for all *i*.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	9	$R, C \le 20$
2	17	$(a_i, b_i) = (1, 1)$ for all <i>i</i> .
3	20	Each cell will be type D or R.
4	29	There is a sequence of moves from $(1,1)$ to any cell in the maze.
5	25	No additional constraints.

Input

- The first line of input contains the three integers R, C, Q.
- R lines follow, each containing a string of C characters, describing the maze. The cth character on the rth line represents the type of the cell (r, c).
- Q lines follow, describing the queries. The *i*th line contains the four integers a_i , b_i , c_i and d_i .

Output

Output Q lines. On the *i*th line, print the answer to the *i*th query.

Sample Input 1	Sample Output 1
583	9
DBBRDDBD	4
RDDRRRB	7
BRDBBDBB	
BDDDRRDD	
RBBRRBBD	
1 2 3 7	
3 3 1 1	
3 6 4 4	

Sample Input 2	Sample Output 2
4 4 4	7
BBRD	4
DRBB	4
BDRD	2
BBRB	
2 1 3 3	
1 3 2 2	
3 3 1 3	
4 1 3 2	

Explanation

In Sample Input 1:

- For the first query, Puss and Kitty start in cell (1, 2) and (3, 7) respectively. They can meet in cell (3, 8), requiring 8 and 1 moves respectively, for a total of 9 moves.
- For the second query, Puss and Kitty start in cell (3,3) and (1,1) respectively. They can meet in cell (3,3), requiring 0 and 4 moves respectively, for a total of 4 moves.
- For the third query, Puss and Kitty start in cell (3,6) and (4,4) respectively. They can meet at cell (5,7), requiring 3 and 4 moves respectively, for a total of 7 moves.

Figure 2: Sample Input 1

In Sample Input 2:

- For the first query, Puss and Kitty start in cell (2, 1) and (3, 3) respectively. They can meet in cell (4, 4), requiring 5 and 2 moves respectively, for a total of 7 moves.
- For the second query, Puss and Kitty start in cell (1,3) and (2,2) respectively. They can meet in cell (2,4), requiring 2 and 2 moves respectively, for a total of 4 moves.
- For the third query, Puss and Kitty start in cell (3,3) and (1,3) respectively. They can meet at cell (3,4), requiring 1 and 3 moves respectively, for a total of 4 moves.
- For the fourth query, Puss and Kitty start in cell (4, 1) and (3, 2) respectively. They can meet at cell (4, 2), requiring 1 and 1 move respectively, for a total of 2 moves.

Figure 3: Sample Input 2. Queries 3 and 4 are shown on a separate copy of the maze for clarity.