Hedge Maze

Puss and Kitty must face the diabolical challenge of the Down-Right Hedge Maze. The maze is an $R \times C$ grid of cells with R rows (numbered 1 to R from top to bottom) and C columns (numbered 1 to C from left to right). The cell in the r th column and c th row is denoted (r, c). There are three types of cells, denoted by an uppercase character:

- D: It is only allowed to move downwards from this cell (if there is a cell there).
- R: It is only allowed to move rightwards from this cell (if there is a cell there).
- B: It is allowed to move downwards or rightwards from this cell (if there is a cell there).

It is possible to reach cell (R, C) from every cell in the maze.

Figure 1: The maze from Sample Input 1. Thick black lines are drawn between cells where a move is disallowed.

To defeat the challenge, Puss and Kitty must answer Q queries. In each query, you are given four integers a_{i}, b_{i}, c_{i} and d_{i} and must answer the following question: If Puss starts in the cell $\left(a_{i}, b_{i}\right)$ and Kitty starts in the cell $\left(c_{i}, d_{i}\right)$, what is the the fewest total moves they must make to meet at a common cell? Puss and Kitty start in different cells.

Subtasks and Constraints

For all subtasks:

- $2 \leq R \leq 1000$
- $2 \leq C \leq 500000$
- $4 \leq R \times C \leq 1000000$
- $1 \leq Q \leq 100000$
- $1 \leq a_{i} \leq R$ and $1 \leq b_{i} \leq C$ for all i.
- $1 \leq c_{i} \leq R$ and $1 \leq d_{i} \leq C$ for all i.
- $\left(a_{i}, b_{i}\right) \neq\left(c_{i}, d_{i}\right)$ for all i.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	9	$R, C \leq 20$
2	17	$\left(a_{i}, b_{i}\right)=(1,1)$ for all i.
3	20	Each cell will be type D or R.
4	29	There is a sequence of moves from $(1,1)$ to any cell in the maze.
5	25	No additional constraints.

Input

- The first line of input contains the three integers R, C, Q.
- R lines follow, each containing a string of C characters, describing the maze. The c th character on the r th line represents the type of the cell (r, c).
- Q lines follow, describing the queries. The i th line contains the four integers a_{i}, b_{i}, c_{i} and d_{i}.

Output

Output Q lines. On the i th line, print the answer to the i th query.

Sample Input 1

Sample Output 1

5	8	3
DBBRDDBD	9	
RDDRRRRB	4	
BRDBBDBB	7	
BDDDRRDD		
RBBRRBBD		
1	2	3
3	3	1

Sample Input 2

Sample Output 2

```
444
    7
BBRD 4
DRBB 4
BDRD 2
BBRB
2 3 3
1322
3 3 1 3
4132
```


Explanation

In Sample Input 1:

- For the first query, Puss and Kitty start in cell $(1,2)$ and $(3,7)$ respectively. They can meet in cell $(3,8)$, requiring 8 and 1 moves respectively, for a total of 9 moves.
- For the second query, Puss and Kitty start in cell $(3,3)$ and $(1,1)$ respectively. They can meet in cell $(3,3)$, requiring 0 and 4 moves respectively, for a total of 4 moves.
- For the third query, Puss and Kitty start in cell $(3,6)$ and $(4,4)$ respectively. They can meet at cell $(5,7)$, requiring 3 and 4 moves respectively, for a total of 7 moves.

Figure 2: Sample Input 1

In Sample Input 2:

- For the first query, Puss and Kitty start in cell $(2,1)$ and $(3,3)$ respectively. They can meet in cell $(4,4)$, requiring 5 and 2 moves respectively, for a total of 7 moves.
- For the second query, Puss and Kitty start in cell $(1,3)$ and $(2,2)$ respectively. They can meet in cell $(2,4)$, requiring 2 and 2 moves respectively, for a total of 4 moves.
- For the third query, Puss and Kitty start in cell $(3,3)$ and $(1,3)$ respectively. They can meet at cell $(3,4)$, requiring 1 and 3 moves respectively, for a total of 4 moves.
- For the fourth query, Puss and Kitty start in cell $(4,1)$ and $(3,2)$ respectively. They can meet at cell $(4,2)$, requiring 1 and 1 move respectively, for a total of 2 moves.

Figure 3: Sample Input 2. Queries 3 and 4 are shown on a separate copy of the maze for clarity.

