Maximum Matrix

Neo likes matrices. Neo's favourite type of matrix is a grid with R rows and C columns, where each cell in the matrix contains a positive integer.
Neo assigns a score (A, B) to each matrix:

- A is the number of ascending rows. A row is ascending if the values in this row are ascending when read from left to right. Specifically, if the values in the row are $v_{1}, v_{2}, \ldots, v_{C}$ from left to right, then the row is ascending if $v_{1} \leq v_{2} \leq \ldots \leq v_{C}$.
- B is the number of constant columns. A column is constant if the values in this column are all the same.

2	3	3	6	8
2	3	1	6	8
1	3	6	6	8

Figure 1: An example matrix with $R=3$ rows and $C=5$ columns. There are 2 ascending rows (the first and third) and 3 constant columns (the second, fourth, and fifth). Neo's score for this matrix is $(2,3)$.

A matrix is better than another matrix if it has a lexicographically higher score. In particular, assume that you have one matrix with a score (A, B) and another matrix with a score $\left(A^{\prime}, B^{\prime}\right)$. The first matrix is better if one of the following conditions holds:

- $A>A^{\prime}$, or
- $A=A^{\prime}$ and $B>B^{\prime}$.

For example,

- A matrix with score $(5,3)$ is better than a matrix with score $(4,4)$.
- A matrix with score $(5,3)$ is better than a matrix with score $(5,2)$.
- A matrix with score $(5,3)$ is not better than a matrix with score $(5,4)$.
- A matrix with score $(5,3)$ is not better than a matrix with score $(6,1)$.

You have found a matrix with some missing values. To impress Neo, you want to fill in the missing values with positive integers in a way that creates the best possible matrix. What is the score of the best matrix you can create?

Subtasks and Constraints

For all subtasks:

- $1 \leq R \leq 250000$ and $1 \leq C \leq 250000$.
- $R \times C \leq 1000000$.
- All non-missing values in the matrix are positive integers from 1 to 1000000 , inclusive.

Additional constraints for each subtask are given below.

Subtask	Points	Additional constraints
1	7	$R=1$.
2	18	The answer has $A=R$.
3	10	$R \leq 10, C \leq 10$, and every column has at least one value that is not missing.
4	8	$R \leq 10$ and $C \leq 10$.
5	17	$R \leq 100, C \leq 100$, and every column has at least one value that is not
		missing.
6	11	$R \leq 100$ and $C \leq 100$.
7	14	$R \leq 5000$ and $C \leq 5000$.
8	15	No additional constraints.

Input

- The first line of input contains the integers R and C.
- The next R lines of input each contain C integers, describing the Matrix. Each value in the matrix is either a positive integer or zero, where zero represents a missing value.

Output

Output two integers A and B on a single line, representing the score (A, B) of the best matrix that can be created.

Sample Input 1

35
23360
03168
13608

Sample Input 2

23
102
304

Sample Input 3

```
24
2401
2 0 3 1
```


Sample Output 1

23

Explanation

The first sample case has three missing values. One optimal way to fill in the missing values is to create the matrix shown in Figure 1, with $A=2$ ascending rows and $B=3$ constant columns.

The second sample case can be filled in as follows, with $A=2$ ascending rows and $B=0$ constant columns:

112
344
The third sample case can be filled in as follows, with $A=0$ ascending rows and $B=4$ constant columns:

2431
2431

