PROBLEM 4

Beautiful Buildings

Input File: buildin.txt
Output File: buildout.txt
Time and Memory Limits: 1 second, 1 GB

There are N buildings in a row, numbered 1 to N from left to right. The i th building has height H_{i}, and you believe that adjacent buildings of a similar height look beautiful.

The ugliness of the buildings is the sum of the absolute differences ${ }^{1}$ of the heights of adjacent buildings.
The ugliness can be expressed as $\left|H_{1}-H_{2}\right|+\left|H_{2}-H_{3}\right|+\cdots+\left|H_{N-1}-H_{N}\right|$.

Figure 1: The blue arrows represent the absolute differences between the heights of adjacent buildings. Their values sum to 180: the initial ugliness of the buildings in the test case.

You may change the height of up to one building. What is the minimum ugliness you can achieve?

Input

- The first line of input contains the integer N.
- The second line of input contains N integers describing the heights of the buildings. They are $H_{1}, H_{2}, \ldots, H_{N}$.

Output

Your program must output one integer: the minimum ugliness you can achieve.

[^0]
Sample Input 1
 6
 806010407020

Sample Output 1
120

Sample Input 2

3
51015

Sample Output 2

5

Sample Input 3

4
2222
Sample Output 3
0

Explanation

In the first sample case, you can achieve an ugliness of 120 by changing the height of the third building to 50 .

- The initial ugliness is $|80-60|+|60-10|+|10-40|+|40-70|+|70-20|=180$.
- The modified ugliness is $|80-60|+|60-50|+|50-40|+|40-70|+|70-20|=120$.

Figure 2: Sample Input 1 after modification.
In the second sample case, you can achieve an ugliness of 5 by changing the height of the first building to 10 .

- The initial ugliness is $|5-10|+|10-15|=10$.
- The modified ugliness is $|10-10|+|10-15|=5$.

In the third sample case, you can achieve an ugliness of 0 by choosing not to change the height of any buildings.

- The initial ugliness is $|2-2|+|2-2|+|2-2|=0$.

Subtasks \& Constraints

For all subtasks:

- $2 \leq N \leq 100000$.
- $1 \leq H_{i} \leq 10000$ for all i.

Additionally:

- For Subtask 1 (25 marks), $H_{i} \leq H_{i+1}$ for all i. That is, the heights are non-decreasing.
- For Subtask 2 (20 marks), $N \leq 100$ and $H_{i} \leq 100$ for all i.
- For Subtask 3 (20 marks), $N \leq 1000$ and $H_{i} \leq 1000$ for all i.
- For Subtask 4 (35 marks), no special constraints apply.

[^0]: ${ }^{1}$ The absolute value of a real number (denoted by vertical bars) is equivalent to its distance from 0 . For example, $|2|=|-2|=2$. The absolute difference between two numbers is equivalent to the distance between them. For example, $|5-10|=|-5|=5$.

