
French-Australian Regional Informatics Olympiad 2014 — Super Maria II: Another Castle 1

Super Maria II: Another Castle

The Fungus Republic had been a peaceful place thanks to the brave deeds of the humble electrician,
Maria, but this all changed when her arch-nemesis Wowser invaded. Wowser kidnapped Prince
Nectarine (again) and hid him somewhere he thought Maria would never find.

Maria was undaunted, however, and using the signal from Nectarine’s mushroom phone was
able to narrow down his location to one of N castles. The castles are arranged in a line and are
numbered from 0 to N − 1 where castle 0 is the leftmost castle, castle 1 is second from the left,
etc.

Maria is very hasty about finding the prince, so she has rented a carriage to be pulled by Shoyi
the friendly dinosaur. Whenever Maria wants to get out of the carriage or change direction, she
must pay Shoyi a tip.

Maria begins at castle 0, facing to the right. When Maria is at castle i, she can do one of three
things.

• Move to any castle in the direction she is facing without spending any coins. That is, if she
is facing left, she can move to any castle j at no cost providing that j < i. If she is facing
right then she can move to any castle j at no cost providing that j > i.

• Pay Shoyi C1 coins to turn the carriage around and face the opposite direction.

• Pay Shoyi C2 coins to let Maria out so that she can open the door of castle i. If Maria
chooses to do this, one of two things happen.

– She finds Prince Nectarine, defeats Wowser, and returns the Fungus Republic to safety.

– Shce finds Frog, who kindly tells her that the prince is in another castle and in which
direction (left or right) she must go to find him.

Maria wants to minimise the total number of coins she spends in finding the prince. Maria
whips out her trusty laptop and sends you an e-mail, asking you to write a program to help find
the prince while minimising the total number of coins she pays Shoyi.

Input / Output

This task has no input or output files. Instead it must use functions from the header file “carriage lib.h”
to gain information. These provided functions are described in detail on the next page.

French-Australian Regional Informatics Olympiad 2014 — Super Maria II: Another Castle 2

Library

Your program must interact with functions in “carriage lib.h”, as follows:

• Your program must begin by calling carriage nb cells(), carriage reverse cost(), and
carriage open cost()

– carriage nb cells() returns N, the number of castles which the prince may be in.

– carriage reverse cost() returns C1, the number of coins Maria must pay Shoyi to
change direction.

– carriage open cost() returns C2, the number of coins Maria must pay Shoyi to stop
so that she can open a castle door.

• Your program should then repeatedly call carriage move(int k) and carriage open() in
order to find the castle which holds the prince.

– carriage move(int k) moves the carriage a distance of |k| to the left or right depending
on whether k is positive or negative. For instance calling this function with −5 as an
argument will cause Maria’s carriage to move 5 cells to the left. If Maria is not already
facing in the direction she is made to move, she must pay Shoyi C1 coins to change
direction. If the argument given to this function causes Maria to move to a position
which is negative or is not less than N, then your program will be terminated and will
be awarded no marks.

– carriage open() causes Maria to pay Shoyi C2 coins to stop the carriage so that she
can open the castle door. If Maria is at the castle where Prince Nectarine has been
hidden then your program will be terminated and you will be awarded marks according
to the ”Scoring” section on the next page. Otherwise, this function will return 1 if the
prince is in a castle to the right of the current castle, or −1 if the prince is in a castle
to the left of the current castle.

Library Prototypes

The signatures for these functions in C and C++ are as follows:

int carriage_nb_cells();

int carriage_reverse_cost();

int carriage_open_cost();

void carriage_move(int k);

int carriage_open();

Experimentation

In order to experiment with your code on your own machine, first download carriage lib.h to
the same folder as your code file and add #include "carriage lib.h" to the top of your code.

The compiled executable will take four whitespace-separated integers from standard input on
the first call to a provided function from the header file. The integers should represent, respectively,
N , C1, C2 and p where the castle with index p (between 0 and N − 1) contains Prince Nectarine.

The executable will print one line to standard output, either an error message due to invalid
input or an invalid move, or an indication of success including the number of coins used.

French-Australian Regional Informatics Olympiad 2014 — Super Maria II: Another Castle 3

Sample Input

10 3 4 7

Sample Session

Function Call Explanation
carriage nb cells() Returns 10, the number of castles.
carriage reverse cost() Returns 3, the cost of changing direction.
carriage open cost() Returns 4, the cost of opening a castle door.
carriage move(5) Moves to castle 5, at no cost.
carriage open() Returns 1, as the Prince is in castle 7, to the right of castle 5. This costs 4

coins.
carriage move(4) Moves to castle 9, at no cost.
carriage open() Returns −1, as the Prince is in castle 7, to the left of castle 9. This costs 4

coins.
carriage move(-3) Moves to castle 6. This costs 3 coins, as it involved a change in direction.
carriage open() Returns 1, as the Prince is in castle 7, to the right of castle 6. This costs 4

coins.
carriage move(1) Moves to castle 7. This costs 3 coins, as it involved a change in direction.
carriage open() Finds the prince! This costs 4 coins. The program outputs that the prince has

been found with the use of 22 coins and exits.

Scoring & Constraints

• For all cases, N , C1 and C2 are integers such that 1 ≤ N ≤ 1, 000, 000
and 0 ≤ C1, C2 ≤ 10, 000.

• For 30% of cases, N ≤ 1000 and C1, C2 ≤ 1000.

• For each test case, your score will be 100 if your program finds the Prince with the minimum
number of coins. Otherwise, if your program successfully finds the Prince your score will be
a value between 0 and 60, based on a linear function of the number of coins your program
used.

• Your total score for the task will be the average of your scores for each individual test case.

• Note that the judges use a modified version of the library which will force your program to
use as many coins as possible in each case.

