Bongi

Stop what you are doing, a new very fun game has just been released: Bongi. The game is played using N balls. The i th ball has the positive integer a_{i} written on it.
You must divide the balls into K baskets, numbered 1 to K. Every ball must go into one of the baskets and every basket must contain at least one ball. The value of a basket is the sum of the integers on the balls in it. Your score is the geometric mean ${ }^{1}$ of the values of the baskets.
Consider the following example with $K=2$ baskets and $N=5$ balls of value $12,14,16,17$ and 25 . One possible solution is as follows:

- The first basket contains 16 and 17 , and
- The second basket contains 25,12 and 14 .

The score of this solution is $(16+17)^{0.5} \cdot(25+12+14)^{0.5} \approx 41.02$.
You do not have to produce the maximum score possible, instead you are awarded points based on the score you are able to achieve.
This is an output only problem. You do not submit source code for this task. Instead, you are given a series of input files and must submit the corresponding output files.

Constraints

For all test cases:

- $1 \leq a_{i} \leq 10000$ for all i.
- $2 \leq K \leq N \leq 100$.

Input

- The first line of input contains the two integers N and K.
- The second line contains N integers $a_{1}, a_{2}, \ldots, a_{N}$.

Output

Output K lines, each containing a collection of integers, such that the i th line contains the values of the balls in the i th basket.

[^0]
Scoring

If you do not put every ball into exactly one basket, and have each basket contain at least one ball, you will score 0% of the points for that test case.

Otherwise, let X be the score of your solution, B be the judges' best solution and $S=a_{1}+a_{2}+\cdots+a_{N}$. Then you will score

$$
\min \left(100 \cdot \frac{10+S / K-B}{10+S / K-X}, 100\right)
$$

percent of the points for that test case.
Note that it is possible to prove that $X \leq S / K$, thus the scoring function is well-defined.

Testcase	Points	N	K	Judges' best score
1	5	5	2	42
2	10	20	10	9564.453334019241
3	10	100	10	55237.69999809915
4	15	100	20	25324.1999731493
5	20	100	30	16980.161334096203
6	20	100	40	13886.860798648839
7	10	100	50	10086.367502580433
8	10	100	60	8392.505093895417

Submitting

To submit your output file for test case X, you must upload a file named output_X.txt. For example, for test case 4, the output file must be named output_4.txt.

You can choose to upload your output file for each test case individually, or together in a zip file.
Your score for this problem is the sum of your maximum scores for each test case, over all submissions you have made to this problem.

Sample Input 1

$\begin{array}{lllll}5 & 2 \\ 16 & 25 & 17 & 14 & 12\end{array}$

Sample Output 1

1617
251214

Explanation

The score of the solution is $X=(16+17)^{0.5} \cdot(25+12+14)^{0.5} \approx 41.02$. For this example, the best solution of the jury has score 42. Therefore, the percentage of points obtained by this output is

$$
\approx 100 \cdot \frac{10+84 / 2-42}{10+84 / 2-41.02} \approx 91.11
$$

This example corresponds to the first test, which is worth 5 points. The number of points obtained when submitting this solution is $4.56 / 5$.

Sample Code

You are provided with two files, template. cpp and bongi.hpp, to help you implement your solution. The file bongi.hpp contains two functions that you may find useful:

```
double get_score(vector<vector<int> > solution);
```

This function returns the score of a solution. For example, if solution $=\left[\begin{array}{l}16,17] \text {, [25, }\end{array}\right.$ 12, 14]], then get_score (solution) returns (approximately) 41.02.

```
double get_percentage(vector<vector<int> > solution);
```

This function returns the percentage of points that a solution would be given. For example, if solution $=[[16,17]$, [25, 12, 14$]]$, then get_percentage(solution) returns (approximately) 91.11.

The file template.cpp contains an example usage of get_percentage. You can compile template.cpp using this command:
g++ -Wall -std=c++17 -02 -o template template.cpp

[^0]: ${ }^{1}$ The geometric mean of k values $a_{1}, a_{2}, \ldots, a_{k}$ is defined as $a_{1}^{1 / k} \times a_{2}^{1 / k} \times \ldots \times a_{k}^{1 / k}$. For example, the geometric mean of 8,9 and 10 is $8^{1 / 3} \times 9^{1 / 3} \times 10^{1 / 3} \approx 2 \times 2.080 \times 2.154 \approx 8.963$.

